
INTRODUCTION 

Wearable technologies and smart textiles have

gained popularity in recent years, especially for con-

stant supervision of human health or rehabilitation.

Some of the related works focused on monitoring

body parameters (e.g., blood pressure and heart

rate) [1], while some others were absorbed in body

posture recognition [2]. By means of wearable tech-

nology, another topic worthy of attention is physical

activity (e.g., standing, sitting and walking) recogni-

tion (PAR), which can also be illustrated as one mea-

sure of biomechanical or biomedical tasks of our pop-

ulation as well as body posture [2]. For instance,

suggested bending ranges of the human spine are

varied with physical activities, hence, whether the

spine bending angle is appropriate should be consid-

ered together with the physical activity at that time.

In order to recognize the physical activity, various

approaches have been proposed in the past

decades, and most of them were realized by con-

ducting vision computing [3]. Obviously, visual-based

recognition is not suitable for wearable products.

Some other works based on audio [4] or radio [5]

technologies own potentials for applying to smart

textiles, but environment or multi-sensors dependent

characteristics discourage users from participating in

the PAR [6]. Single or few sensors based wearable

technology should be a good choice for PAR with

advantages of low-cost, low-energy and low-com-

plexity, and it is most likely to be integrated into tex-

tiles. Some previous research utilized an indepen-

dent accelerometer [7] or a set of accelerometers

and gyroscopes embedded in the smartphone [8]

with some supervised machine learning algorithms to

realize recognition. From the works, we can find that

data acquisition by a set of accelerometers and gyro-

scope, which can be integrated into smart textiles, do

contribute to PAR, but data analysis methods can still

be improved to promote recognition rates. 

In this study, we proposed a new alternative that

combines features reduction and random forest algo-

rithm to analyse data from the work of Anguita et al. [8],
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Random forest-based physical activities recognition by using wearable sensors

Physical activity recognition (PAR) is a topic worthy of attention. In order to improve the practicality of wearable sensors
for recognition, in this study, we propose an approach to create a classifier of PAR based on the collected data. At first,
we discuss how features extracted from the accelerometer and gyroscope contribute to distinguish different activities,
including walking, walking upstairs, walking downstairs, sitting, standing, laying, and also provide an analytical method
employed for this purpose. Then, a supervised machine learning method, random forest algorithm, is adopted to create
a classifier to recognize physical activities based on the extracted features. Lastly, the performances of the constructed
classifier are evaluated and compared with other methods. The performance evaluation shows the classifier trained by
random forest algorithm are better than other algorithms, and its overall recognition rate reaches 93.75%. In addition,
our approach also has strong potential for applications in smart textiles.
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Recunoașterea activităților fizice prin algoritmul arborilor decizionali utilizând senzorii purtabili

Recunoașterea activității fizice (PAR) este un subiect demn de atenție. Pentru a îmbunătăți caracterul practic al
senzorilor purtabili pentru recunoaștere, în acest studiu, propunem o abordare pentru a crea un clasificator al PAR pe
baza datelor culese de către aceștia. La început, discutăm despre modul în care caracteristicile extrase din
accelerometru și giroscop contribuie la distingerea diferitelor activități, inclusiv mersul pe jos, urcarea, coborârea, poziția
așezat, statul în picioare, poziția culcat și, de asemenea, oferă o metodă analitică folosită în acest scop. Apoi, o metodă
de învățare automată supravegheată, algoritmul arborilor decizionali, este adoptată pentru a crea un clasificator care să
recunoască activitățile fizice pe baza caracteristicilor extrase. În final, performanțele clasificatorului construit sunt
evaluate și comparate cu alte metode. Evaluarea performanței arată că acest clasificator antrenat de algoritmul arborilor
decizionali este mai performant decât alți algoritmi, iar rata sa de recunoaștere globală ajunge la 93,75%. În plus,
abordarea noastră are și un potențial puternic pentru aplicații în textilele inteligente. 

Cuvinte-cheie: recunoașterea activităților fizice, arbori decizionali, textile inteligente, analiza caracteristicilor
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which aims to create a more effective classifier for

PAR and improve practicality of wearable accelerom-

eter and gyroscope for PAR. The flowchart of the pro-

posed methodology is shown in figure 1. At first,

numerous features extracted from the database are

analysed for capabilities of distinguishing different

activities (including walking, walking upstairs, walking

downstairs, sitting, standing, laying), and the princi-

pal features with main contributions to PAR are

explored. Then, a supervised machine learning

method, random forest (RF) algorithm, is adopted to

create a classifier to recognize physical activities

based on the extracted features. Lastly, the perfor-

mances of the constructed classifier are evaluated

and compared with other methods to demonstrate

the effectiveness of our approach.

BACKGROUND OF RANDOM FOREST  

Random forest, which is a variant of the decision

tree-based bagging technique [9], is commonly used

for regressions, classifications and cluster problems

[10]. The main idea of RF is generating results by a

simple unweighted average over a series of indepen-

dently decision trees [11] that are trained based on

samples by sampling with replacement and features

by sampling without replacement, as shown in fig-

ure 2, and the steps are listed as follow.
1. Randomly draw n sets of samples from the data

set with replacement, and the number of samples in

each set is the same with original data set.

Meanwhile, m features in each set are randomly

selected from all features without replacement, and

features in different sets may be different. 

2. Decision trees are grown, based on the corre-

sponding drawn samples and features, in the light of

the minimum Gini index as below.

M
IG (tx(xi)

) = 1 – j=1 f (tx(xi)
, j)2 (1)

where f (tx(xi)
, j) denotes the proportion of samples

that belongs to the leaf j while node t has the value xi.

3. The classifier is built on the so-called forest, that is

composed of the grown decision trees, by unweight-

ed voting as below

1 N
T(x) =     k=1 Tk (2)

N

where Tk indicates the k-th decision tree.

FEATURES ANALYSIS

Data acquisition and pre-processing

In this study, the adopted human activity recognition

data set was created by Anguita et al. [8]. All data, in

terms of 3-axial linear acceleration and 3-axial angu-

lar velocity at a constant rate of 50 Hz, came from the

accelerometer and gyroscope embedded in smart-

phones worn on the waist by 30 volunteers, who are

in an age bracket of 19–48 years. The collected data

went through a transformation process, including

noise filtering, time-domain analysis and frequency

domain analysis, and 35 kinds of signals were

obtained as listed in table 1. Then, a set of 561 fea-

tures were estimated from these signals by conduct-

ing a series of mathematical operations listed in

table 2. For examples, body acceleration signals in

X direction (‘tBodyAcc-X’ in table 1) can be averaged

(‘mean()’ in table 2) to generate a feature named

‘tBodyAcc-mean()-X’.
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Fig. 1. The flowchart of the proposed methodology

Fig. 2. The flowchart of random forest
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DESCRIPTION FOR OBTAINED SIGNALS

Code Name Descriptions

0-2 tBodyAcc-XYZ X,Y,Z-dimensional time domine signals of body linear acceleration

3-5 tGravityAcc-XYZ X,Y,Z-dimensional time domine signals of acceleration of gravity

6-8 tBodyAccJerk-XYZ X,Y,Z-dimensional time domain signals of body linear jerk

9-11 tBodyGyro-XYZ X,Y,Z-dimensional time domain signals of body angular velocity

12-14 tBodyGyroJerk-XYZ X,Y,Z-dimensional time domain signals of body angular jerk

15 tBodyAccMag
Magnitude of three-dimensional time domine signals of body linear accel-

eration was calculated by conducting Euclidean norm

16 tGravityAccMag
Magnitude of three-dimensional time domine signals of acceleration of

gravity was calculated by conducting Euclidean norm

17 tBodyAccJerkMag
Magnitude of three-dimensional time domine signals of body linear jerk was

calculated by conducting Euclidean norm

18 tBodyGyroMag
Magnitude of three-dimensional time domine signals of body angular veloc-

ity was calculated by conducting Euclidean norm

19 tBodyGyroJerkMag
Magnitude of three-dimensional time domine signals of body angular jerk

was calculated by conducting Euclidean norm

20-22 fBodyAcc-XYZ X,Y,Z-dimensional frequency domine signals of body linear acceleration

23-25 fBodyAccJerk-XYZ X,Y,Z-dimensional frequency domain signals of body linear jerk

26-28 fBodyGyro-XYZ X,Y,Z-dimensional frequency domain signals of body angular velocity

29-31 fBodyGyroJerk-XYZ X,Y,Z-dimensional frequency domain signals of body angular jerk

32 fBodyAccMag
Magnitude of three-dimensional frequency domine signals of body linear

acceleration was calculated by conducting Euclidean norm

33 fBodyAccJerkMag
Magnitude of three-dimensional frequency domine signals of body linear

jerk was calculated by conducting Euclidean norm

34 fBodyGyroMag
Magnitude of three-dimensional frequency domine signals of body angular

velocity was calculated by conducting Euclidean norm

35 fBodyGyroJerkMag
Magnitude of three-dimensional frequency domine signals of body angular

jerk was calculated by conducting Euclidean norm

Table 1

DESCRIPTION FOR SIGNAL OPERATORS

Code Name Descriptions

1 mean( ) Mean value

2 std( ) Standard deviation

3 mad( ) Median absolute deviation

4 max( ) Largest value in array

5 min( ) Smallest value in array

6 sma( ) Signal magnitude area

7 energy( ) Energy measure. Sum of the squares divided by the number of values.

8 iqr( ) Interquartile range

9 enntropy( ) Signal entropy

10 arCoeff( ) Autoregresion coefficients with Burg order equal to 4

11 correlation( ) Correlation coefficient between two signals

12 maxInds( ) Index of the frequency component with the largest magnitude

13 meanFreq( ) Weighted average of the frequency

14 skewness( ) Skewness of the frequency domain signal

15 kurtosis( ) Kurtosis of the frequency domain signal

16 bandsEnergy( ) Energy of a frequency interval within the 64 bins of the FFT of each window

17 angle( ) Angle between to vectors

Table 2



Meanwhile, human activities were also recorded by

video, which were utilized for labelling acquired data.

10297 items of activities were labelled and classified

into six categories in terms of laying (1944 items),

standing (1906 items), sitting (1777 items), walking

(1722 items), walking upstairs (1542 items), walking

downstairs (1406 items). In a word, there are 10297

items of labelled activities with 561 features for

descriptions in the data set. 

Features analysis and reduction

More features would boost the potential for discrimi-

nating different physic activities, but they also

increase the computational load. In order to reduce

computational load without decreasing the ability of

PAR, the validity of features was verified at first, and

useless features were eliminated. 

In the verification, histograms were utilized to visual-

ize descriptive characteristics of the features for dif-

ferent activities. Abscissa and ordinate in the his-

togram respectively indicate the normalized value of

the selected feature and a corresponding number of

activities, while different types of activities are dis-

criminated by colours. From the histograms of some

features, we can find that distributions of some types

of activities are significantly different from others, and

it means these types of activities can be recognized

by the features. For example, as shown in figure 3,

the feature “angle(X,gravityMean)” is particularly suit-

able for distinguishing ‘laying’ from other activities,

and the feature “fBodyAcc-entropy()-X” can be used for

distinguishing between static activities (i.e., “sitting”,
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Fig. 3. Histograms and confusion matrix of similarities of the features with high contributions to PAR, including:

a – angle(X,gravityMean); b – fBodyAcc-entropy()-X

a                                                                                         b

“standing” and “laying”) and dynamic activities (i.e.,

“walking”, “walking upstairs” and “walking downstairs”). 

By contrast, some features are hardly utilized for

recognition due to similarities of different distributions

in the histograms, some distributions are so similar

that the corresponding feature cannot own the

ability of recognition, such as the features

“fBodyBodyGyroJerkMag-kurtosis()” and “fBodyBody

GyroMag-skewness()” in figure 4. The similarity of

any two distributions in the histogram of a feature be

quantitatively measured by equation 3.

Ni=1 [(H1(i) – H1)  (H2(i) – H2)]
S =                                                         (3)

 
N

(H1(i) – H1)2  
N

(H2(i) – H2)
2

i=1
i=1

where denotes the number of activities (i.e., ordinate

value) corresponding to the i-th bin (range of abscis-

sa value are divided into N bins) in the distribution 1,

and H is the mean values calculated as below.

Ni=1 H1(i)
H =               (4)

N
In equation 3, S approaching 1 indicates the greater

the correlation between the two distributions, and if S
is negative, it indicates that the feature has a strong

ability to distinguish between the two distributions.

Thus, by pairwise comparison of the distributions

caused by six types of activities in the histogram of a

feature, we can generate the confusion matrix of sim-

ilarities for judging the ability of PAR of the feature, as

shown in figure 3 and 4. After analysis, 64 features

were eliminated because of low contributions to PAR. 



CLASSIFIER CONSTRUCTION AND

EVALUATION

In the construction of the classifier, at first, the

obtained data set is divided into a training subset and

test subset according to the ratio of 7:3. Next, based

on the training subset, parameters of random forest

algorithm were optimized to generate a classifier for

PAR. Then, the performance of the classifier was

evaluated based on test subset. Finally, a compari-

son experiment with other commonly used classi-

fiers, including support vector machines (SVM) [12],

k-nearest neighbour classification(KNN) [13], multi-

layer perceptron (MLP) [14] and quadratic discrimi-

nant analysis (QDA) [15], was conducted. The

detailed descriptions are given in the following sub-

sections. 

Classifier training by random forest

The classifier for PAR was trained by random forest

algorithm based on training subset. During the train-

ing process, two important parameters, including the

number of decision trees n_tree, and the max num-

ber of features used for growing a tree max_features,

need to be determined. In usual, max_features is

decided by “sqrt” or “log2”, in other words, max_fea-
tures can be square root or base 2 logarithm of total

number of features, and which one is better needs to

be compared. The optimal value of n_tree can be

achieved by traversing possible values. Thus, as

shown in figure 5, we have plotted curves that reflect
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Fig. 4. Histograms and confusion matrix of similarities of the features with low contributions to PAR, including:

a – fBodyBodyGyroJerkMag-kurtosis(); b – fBodyBodyGyroMag-skewness()

a                                                                                         b

Fig. 5. Iteration curves of training by random forest with

different max_features decided by: a – “log2”; b – “sqrt”

b

a



the training accuracy varies with the n_tree respec-

tively under the max_features determined by “sqrt”

and “log2”. 
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same training set. The comparison result is listed in

table 4.

From the results, it is easy to find that the classifier

trained by random forest has better performances

than others.

CONCLUSIONS

In order to improve the practicality of wearable

accelerometers and gyroscopes for physical activi-

ties recognition, we have proposed an approach that

combines features reduction and random forest algo-

rithm to boost the recognition rate. The test has

shown the classifier trained by random forest algo-

rithm are better than other algorithms, and its overall

recognition rate reaches 93.75% which means this

kind of scheme has strong feasibility. 

In addition, wearable accelerometers and gyro-

scopes can be integrated into smart textiles, some

examples were created by other researchers [16,

17], which means our approach has strong potential

for applications in smart textiles. It is worth mention-

ing that data and features for recognitions should be

different if wearable sensors are embedded in the

smart textiles placed on different parts of the body,

but we think our approach can still deal with them and

achieve a good result. 

Therefore, in the future, works can be focused on the

following aspects.

1. Make a series of wearable sensors embedded in

smart textiles and collect more data from them to

prove the feasibility of applications in smart textiles and

further improve the recognition rate of the classifier.

2. Pay attention to recognize other physical activities

besides the six existing ones, such as running and

jumping. 

RECOGNITION RATES OF THE ACTIVITIES

Labels
Number of
samples

Recognition
rate (%)

Laying 537 100

Standing 533 97.00

Sitting 490 89.80

Walking 496 97.58

Walking upstairs 471 92.57

Walking downstairs 420 83.09

Table 3

COMPARISON RESULTS OF CLASSIFIERS TRAINED BY DIFFERENT ALGORITHMS

Indicator RF SVM KNN MLP QDA

Recognition rate 93.34% 91.49% 87.37% 89.57% 78.78%

Table 4

Fig. 6. Confusion matrix of prediction performance

From the curves, we can find that the best recogni-

tion rate is 94.03% corresponding to n_tree =120 on

the conditions of max_features decided by “log2”,

while the best recognition rate is 93.24% corre-

sponding to n_tree = 125 on the conditions of

max_features decided by “sqrt”. Obviously, the curve

from figure 5, a can achieve better result than curve

from figure 5, b. Thus, the optimized parameters can

be determined as follow: n_tree = 125; max_features
= round(log2 497) = 9, where 497 derives from that

561 (total number of features) subtracts 64 (eliminated

features).

Performance evaluation

Through the application of the trained classifier on

the test subset, we find that the overall recognition

rate of the classifier reached 93.75%, of which the

recognition rates for the six physical activities are list-

ed in table 3, and more details are presented by the

confusion matrix as shown in figure 6.

The test results show that the classifier has achieved

a good recognition rate for dynamic activities, static

activities, and single-type activity. Among them, the

trained classifier has the best ability to recognize

“laying”, and the recognition rates of “standing”,

“walking” and “walking upstairs” are all above 90%,

while the recognition rate of “sitting” is approximate to

90%. Although the recognition rate of “Walking down-

stairs” is only 83.09%, it is still at a relatively high

level. In addition, the recognition rate of the classifier

on the test subset is close to the recognition rate on

the training subset, which indicates the trained clas-

sifier has a strong generalization ability.

In order to further evaluate the performances of the

classifier, we compare the current classifier with the

classifiers trained by other common algorithms,

including SVM, KNN, MLP and QDA, based on the
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